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Abstract—A method of measuring three-dimensional spatial
wave size is proposed and statistical distributions of the size
characteristics are derived in explicit integral forms for Gaussian
sea surfaces. New definitions of wave characteristics such as the
crest-height, the length, the size and the wave front location
are provided in fully dimensional context. The joint statistical
distributions of these wave characteristics are derived using the
Rices formulas for expected numbers of local maximum and
distance from a local maximum to a level crossing countour.
Review of the Rice’s method to study crossing distributions will
be given.

I. INTRODUCTION

In oceanography and marine technology the sea elevation
seen as a three dimensional moving surface is perceived
as propagating trains of apparent waves. Determination of
statistical properties of three dimensional wave sizes is of
great importance in ocean-engineering applications such as
a design of mechanical structures that have dimensions of
the same order of magnitude as the wave, e.g., oil platforms,
wave energy harvesters, or even floating airports, bridges, large
ships and piers. The importance of developing methodology
to address spatial properties of waves lies in the fact that the
impact of a wave on a structure depends on the wave shape
in space. In this paper we present an extended approach that
captures better three-dimensional geometry of spatial waves.
This approach is based on a new definition of wave sizes and
on the generalized Rice formula that facilitates derivation of
their statistical distributions.

The distributions describe variability of sea waves proper-
ties for a stationary Gaussian sea defined by the directional
power spectrum associate with the instantaneous wave climate
at the location. Then the long-term distributions of some
wave characteristics from those simulations are obtained by
averaging the distributions over various spectra related to
the wave climate variability. Simulation approach is possible,
however the computation cost of such a procedure would be
prohibitive, especially if one wants good accuracy for high -
and thus rare - crests. In this paper we demonstrate a method
of direct estimation of the stationary sea distributions using
the probabilistic model of W for a given directional spectrum.
Through this one can avoid simulations of large fields that are
required to statistically analyze rare extreme events.

The paper is organized as follows. Section II contains intro-
ductory material: notation, definitions of wave characteristics
in one dimensional records, and a short review of distributions
of wave characteristics in Gaussian seas. The new findings,
definitions of wave characteristics of waves in sea surface, are
given in Section III. A short discussion of methods that are

used for evaluation of statistical distribution of the proposed
waves characteristics is also given in this section. Validation of
the proposed methodology and some examples are presented
in Section IV. Conclusions and an extensive list of references
follows.

II. DISTRIBUTIONS OF WAVES CHARACTERISTICS ALONG
ONE DIMENSION

The sea surface elevation is often measured at a fixed loca-
tion and saved in the form of a time series. Here, we use time
context although the measurements can be also made linearly
in the space in which the case some obvious modification of
terminology is needed. The so called zero-crossing wave is
used to define apparent waves. In this approach wave is a
part of a record between two consecutive upcrossings of the
mean sea level. For simplicity it is assumed that the latter,
also called the still water level, is set to zero. Important wave
characteristics are crest height Ac and crest duration (half
period of a wave) T c, see Figure 1(Top). The crest Ac of a
wave is the maximum value between a zero-upcrossing and
the following zero-downcrossing. Similarly, the crest duration
T c is the time distance between a zero-upcrossing and the
following downcrossing.

Since spatial records are seldom available the spatial wave
characteristics relays on mathematical modeling of sea surface
dynamics. A simple model, that is used here, assumes that each
sinus wave component travel independently at its own celerity.
It can be shown that it results in a probabilistic assumption that
states that W (x, y, t) is a Gaussian field, see [1] for details.
For a long-crested sea for which W (x, y, t) ≈ W (x, t) one
often assumes that sinus waves travels with negative velocity
and hence a zero upcrossings is chosen to mark the front of
an apparent wave.

Space wave characteristics are defined in spatial signals
W (x) = W (x, 0, 0) and W (y) = W (0, y, 0). In the signals,
for example W (x), one can identify the spatial apparent waves
which are characterized by its crest Acx and crest length Lcx
which is the distance between upcrossing and the following
downcrossings of the zero level. The characteristics Acy , Lcy are
defined in a similar way for waves in the spatial signal W (y).
In the following for simplicity of notation we will write A, Lx
and Ly for crest height and crest lengths in x, y, directions,
respectively.

Distributions of wave characteristics describe variability of
the observed waves during stationary sea conditions. These are
understood as limits of histograms, empirical cumulative distri-
butions etc of wave characteristics, as observation time/region
grow without bounds. The limiting distributions can depend on
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Fig. 1. Top: The definition of wave wave crest Ac (crest amplitude) and half
period (crest length) T c. Bottomt: The distribution of crest amplitude and
length computed based on the Rice formula and the actual values observed in
records of 534 temporal waves at shallow water of the coast of Africa.

the considered populations of waves, i.e. the way waves are
collected (counted) and on particular definition of an apparent
wave characteristics.

In Figure 1(Bottom), we have illustrated the approach by
showing the isolines of the distribution for the crest amplitude
and length computed using a popular class of spectra in
ocean engineering the JONSWAP spectrum (JOint North Sea
WAve Project) with the parameters fit to the empirical records.
This distribution is compared with the empirical distribution
of the amplitudes and lengths observed in the data (dots).
One can notice that among 534 waves used in this example
only very few are observed in the area of the extreme crest
amplitudes and lengths. In contrast, the distribution based on
Rice formula provides quite accurate density of the distribution
also in regions with very few observations. This data set and
the numerical routines for obtaining the figure can be found
conveniently in the WAFO toolbox, [2].

Finding a joint probability density for crest height Ac
and length T c is difficult since it requires derivation of three

dimensional density of local maximum and locations of the
nearest zeros of the sea, see for [3] for details. Finding
distributions P (T c > t), and P (Ac ≤ h|T c = t) are much
easier tasks as can be seen in (6) and (7).

In this paper we are focusing on properties of sea waves
characteristics. However the derived results can have ap-
plications in other sciences. For example computations of
P (Ac > h) is also important in studying risk for failures due
to fatigue process in metals, see Remark 1

The concept of zero crossing waves, presented in Fig-
ure 1(Top), is difficult to generalize to the spatial waves (or
spatio-temporal) case. An alternative definition of waves in
space and time has been proposed in [4]. In that work the
so called “acting wave crest” was introduced. Here we shall
slightly modify this approach to cover waves in time, space or
time and space.

Definition 1: For a time point t let D be the largest
interval centered at t such that W (s) > 0 for all s lying in
the interior of the interval D. Point t is a center of a wave
if W (t) = maxs∈DW (s). The crest height of the wave is
defined as A = W (t) while the length of the interval D, T ,
say, is the length of the crest.

The definition applied to the signal in Figure 1(Top) will
give crest amplitude A = Ac however T < T c. In general
applying Definition 1 to a measured signal W (t) may result
in larger number of waves.

A. Distribution of wave characteristics - Rice’s method

For completeness we present expressions for the distri-
butions of some wave characteristics obtained by means of
various generalizations of Rice formula. The classical form of
the latter yields an explicit form for the intensity of zeros in
Gaussian process W (t) having power spectral density S(ω).
If we restrict only to the upcrossings of the zero level, the
average intensity (the average number of the uppcrossings per
the time unit) is given by

µ =
1

2π

√
λ2/λ0. (1)

Here λi’s are spectral moments of S(ω). The formula can
be reinterpreted as the intensity of waves defined by the zero
upcrossing method. Despite that (1) is well known, let us
mention a slightly more general version that extends its validity
beyond the Gaussian case, i.e. one considers a zero mean
stationary process W (t) for which the expected number of
times W (t) = u in a region Λ, NΛ(u), say, is given by

E[NΛ(u)] = ‖Λ‖
∫
|z|fẆ (0),W (0)(z, u) dz.

Clearly, for the Gaussian case and due to independence be-
tween Ẇ (0) and W (0), it turns to the classical Rice’s formula
originally presented in [5], [6] and [7]:

E[NΛ(u)] =
‖Λ‖
π

√
λ2

λ0
e−u

2/2λ0 .

Hence 1
π

√
λ2

λ0
is the intensity of zeros, solutions of W (t) = 0.

Since there are two zeros per wave yielding the formula
for the intensity of waves (1). In what follows we present



integral formulas used to derive the distributions of wave
characteristics. We comment on the principles used to derive
the formulas but we avoid mathematical technicalities and refer
to other work for details.

B. Counting marked waves along lines

As mentioned above a “global” property that each second
zero of W (t) is an zero-upcrossing which marks front of a
wave combined with Rice’s formula gave the intensity of wave
in (1). Finding distributions of wave characteristics is a harder
problem since it requires accounting for some suitable local
properties of W (t) around a time t such that W (t) = 0.
We will illustrate this “local” approach by providing a simple
direct argument for the intensity of waves µ given (1).

Following the definition of waves presented in Figure 1,
any zero upcrossing is a front of a wave. Obviously, if W (t) =
0 and

B = “derivative Ẇ (t) is positive” (2)

is true, then at location t is a front of a wave. Another (more
complex) example of local properties of W (t) is

Br = “derivative Ẇ (t) is positive and for all s ∈ [0, r]

and W (t+ s) ≥ 0”. (3)

Again, if W (t) = 0 and Br is true, then location t is a front of
a wave having half-period longer than r. The expected values
of zeros of W such that a condition ”B” (or ”Br”) holds
can be computed using the following version of Rice’s formula

Generalized Rice Formula: If for a stationary Gaussian
process W its marked zeros, i.e. times W (t) = 0 such that
condition B holds, are homogeneously spread in time, then the
expected number of marked zeros in Λ, NΛ(B) is given by

E[NΛ(B)] = ‖Λ‖
∫
P (B|Ẇ (0) = z,W (0) = 0)

·|z|fẆ (0),W (0)(z, 0) dz, (4)

see Lemma 7.5.2 in [8] for more details.

Combining (4) with (2-3) one obtains formulas for intensity
of waves µ and intensity of waves with half-period exceeding
r, µ(T c ≥ r), respectively, viz.

µ =

∫ +∞

0

zfẆ (0),W (0)(z, 0) dz =
1

2π

√
λ2

λ0
(5)

µ(T c ≥ r) =

∫ +∞

0

P (Br|Ẇ (0) = z,W (0) = 0))

·|z|fẆ (0),W (0)(z, 0) dz. (6)

Note that derivation of (5) requires some simple calculus and
employing property that W (0) and Ẇ (0) are independent.
(One also uses assumption that sea has zero mean.) Intensity
µ(T c ≥ r) in (6) has to be evaluated using numerical
integration. A function RIND from toolbox WAFO could be
used for this purpose.

The method can be used to compute fairly complex events.
For example, in [3], the joint density of the distance from the

Fig. 2. The conditional probability density function of the crest height Ac

and its distance Sc from the level crossing given T c = 2.5s computed from
the spectrum estimated from real data vs. the actual records.

crossing to the crest Sc and the half-amplitude Ac condition-
ally on the value of the half-period T c = t, was obtained

fSc,Ac|T c=t(s, h) =

=

∫
R3 |uvz|P (t, h, u, v, z)f(0, 0, h, 0, u, v, z) du dv dz

µ · fT c(t)
,

(7)

where P (t, h, u, v, z) is the conditional probability of Bth =
{0 < W (u) ≤ h, for all u ∈ (0, t)} given that seven
dimensional vector

(W (0),W (t),W (s), Ẇ (s), Ẇ (0), Ẇ (t), Ẅ (s))

takes value (0, 0, h, 0, u, v, z) while f(x) is the density of this
vector.

Remark 1: In this paper we are presenting means to derive
probability distributions of sea waves characteristics. However
the derived expressions can also be applied to problems in
other sciences. Here we present an important application taken
from mechanics.

For example, let W (t) be a zero mean stationary stress.
For a signal u + W (t), which now has mean u, evaluate the
intensity µ(Ac > h) and denote it by µosc(u, h), the so called
oscillation intensity or the intensity of upcrossings of interval
[u, u+h], see [9]. Knowing the distribution of local maximums
and the oscillation intensity one can derive the rainflow cycles
distribution, see [10] for definition of rainflow cycles. This
distribution is then used to predict the fatigue life prediction
of metallic components.

III. GEOMETRY OF WAVES IN SPACE

In this section a method of counting waves is introduced
and then used to define waves characteristics for the sea surface
W (x, y) that is located in three dimensions.

A stationary Gaussian sea is fully characterized by a
directional spectrum S(ω, α) which describe energy of waves
moving along a line having angle α with x axis. A zero
mean Gaussian sea having directional spectrum S(ω, α) can be
approximated (with arbitrary accuracy) by a sum of indepen-
dent cosine waves with Rayleigh distributed amplitudes and
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Fig. 3. The directional spectrum used in the examples.

uniformly distributed phases. For the directional spectrum let
Sjk = S(ωk, αj) and for αj ∈ [0, 2π], ωk > 0 define the field

W (x, y, t) ≈
∑√

SjkRjk
√
dωkdαj (8)

· cos(t ωk −
ω2
k

g
(x cosαj + y sinαj) + φjk),

where Rjk are independent standard Rayleigh variables, φjk
are independent uniformly distributed over [0, 2π) phases that
are also independent of Rjk, and (dωk, dαj) are infinitesimally
small increments of the rectangular grid over arguments of the
spectrum (the accuracy of approximation depends on how fine
is the grid).

The methodology will by illustrated for waves defined
in Gaussian sea W (x, y) having directional power spectrum
shown in Figure 3. The spectrum has following parameters;
significant wave height hs = 7 [m], average crest length
in x and y directions E[Lx], E[Ly], defined in (10), equal
to 21π [m] and 58π [m], respectively. In fact, the spectrum
is a directional spread of a member from the JONSWAP
parametric family of sea spectra with the half-time period equal
to E[T c] = 4.7[s].

A. Defining waves in space

The following definition of wave is a generalization of
Definition 1.

Definition 2: For a point p let D be the largest disk
centered at p such that W (q) > 0 for all q lying in the interior
of the disk. The point p is a center of a wave if W (p) =
maxq∈DW (q), see Figure 4 for illustration.

The crest height of the wave is defined as A = W (p)
while the radius R of D defines the half-length of the crest.
The point q where the disk D is tangential to the zero level
is a front of the wave. Further the angle Θ such that q =
p + R(cos Θ, sin Θ) will be called the direction of the front
of the wave (with respect to the location of the crest).

Fig. 4. Illustration of wave definition given in Definition 2. The crosses mark
the local maxima.

Note that the Definition 2 applied to a stationary sea,
would locate waves homogeneously on (x, y)-plane. This is
convenient when statistical properties of waves observed over
a large area are of interest.

Remark 2: Many images consist of two or more phases,
where a phase is a collection of homogeneous zones. For
example, the phases may represent the presence of different
sulphides in an ore sample. Frequently, these phases exhibit
very little structure, though all connected components of a
given phase may be similar in some sense. As a consequence,
random set models are commonly used to model such images
The wave characteristics introduced in Definition 2 could be
applied to analyze such images as is sketched below.

Again consider a surface u + W (x, y) and denote by
Au, Ru,Θu, The marginal distributions of the characteristics
depend on the threshold u and are two dimensional functions
describing variability of the surface. Actually in [11], [12], this
kind of variability measures have been used for segmentation
of images containing three types of ore. The distributions of
gray scales for the ore were quit similar making segmentation
difficult. However the ore had different degree of hardness
making variability of gray scales different. The variability were
described using the oscillation intensity similar to µ(Au > h).

B. Size of a wave

The sizes of disks D, given in Definition 2, could serve as
a proxy of the spacial spread of an apparent wave. However
real waves are seldom isotropic, see Figure 4, and hence disk
maybe inadequately describe the spread of a wave. Instead,
we propose to use appropriate ellipses instead of circles and
to introduce them we need to define the normalized sea surface.

1) The normalized sea surface: Consider a stationary sea
with directional spectrum S(ω, α). The normalized sea surface
W̃ is obtained from W by scaling it in both arguments and
in value so that W̃ has variance and variances of its partial



Fig. 5. Size of waves in W (x, y) by applying Definition 2 to the normalized
field W̃ (x, y).

derivatives equal to one. This scaling has natural interpreta-
tion in terms of the normalized directional wave lengths as
discussed next. It is defined using spectral moments λij that
are given by

λij =

∫ 2π

0

∫ +∞

0

S(ω, α)

(
ω2

g

)i+j
(cosα)i(sinα)j dω dα.

(9)
The significant wave height is then hs = 4

√
λ00 while

E[Lx] = π
√
λ00/λ20 E[Ly] = π

√
λ00/λ02 (10)

are the average half wavelengths in x, y directions, respec-
tively. With this notation and terminology the normalized field
can be written explicitely

W̃ (x, y) = W
(
xE[Lx]/π, yE[Ly]/π

)
/
√
λ00. (11)

Thus the normalized sea has the half-lengths of the zero
crossings waves both in the direction x and the direction y
equal to π.

2) Size of a wave - area enclosed by an ellipse: Suppose
that, for a sea state, the directional spectrum is known. In
such a case for a given sea surface W (x, y) one can rescale it
to obtain the normalized field W̃ (x, y), defined in (11). Now
using Definition 2 one can identify waves in W̃ . The crest
position and half-length of the ith wave is denoted by p̃i,
R̃i, respectively. The circles with centers at p̃i and radius R̃i
become ellipses in the original (x, y) coordinates, see Figure 5
for illustration. The size of ith wave can be gauged by the area
enclosed by the ith ellipse, viz.

Si = π Lx LyR̃i
2
. (12)

C. Intensity of waves

In evaluation of safety of maritime operation, “dangerous”
(potentially harmful) events are often defined using wave
characteristics, e.g crest height, period (length), wave steepness

etc. Estimates of risks involves computations of frequency of
the so identified “dangerous” waves. In what follows we define
precisely what is meant by frequencies of the waves. We start
with some necessary notation.

Let consider stationary (homogeneous) sea which will be
observed in a region Λ, say. In the region one will count waves.
Denote by NΛ number of waves found in Λ and let the number
of waves for which an event B happens be denoted by NΛ(B).
Waves and “dangerous” waves (as described by an occurrence
of B for such a wave) are most often spread homogeneously
over the surface. Consequently there is a constant µ(B), called
intensity, such that the expected number of “dangerous” waves
in Λ is equal the intensity of waves times size of Λ, viz.

E[NΛ(B)] = µ(B) · ‖Λ‖,

where ‖Λ‖ is the size of Λ (length, area, volume, etc.).
Obviously the intensity of waves µ, say, is equal to µ(B) for
an event B which is always true. Finally, the probability of B
is defined by

P (B) = µ(B)/µ. (13)

The probability can be formally interpreted, for the ergodic
seas, as a limit of an empirical frequency NΛ(B)/NΛ as the
size ‖Λ‖ increases without bound.

For a given sea state intensity of waves µ is easy to estimate
and is often included as one of sea state parameters. Hence, by
(13), quantities µ(B) and P (B) could be equivalently used.
However if estimates of µ and P (B) are taken from different
sources one has to be cautious that the same definitions of
waves were used when estimating the parameters.

In many applications intensities µ(B) of interest are very
small comparing to the duration of a sea state. Consequently
the intensities have to be extrapolated from the available data.
Statistics and probability theory are a natural frameworks
for such extrapolations. Another approach is to assume a
stochastic model for sea surface variability and then compute
the intensities using suitable probabilistic tools. One is often
using a Gaussian model for the sea. In such a case the power
spectral density (psd) of a sea state defines the model and one
can (at least in principle) evaluate distributions of various wave
characteristics and use those to estimate µ(B). In particular
Rice’s formula [5], [6] and [7] and its generalizations, see e.g.
in [13], [14] and references therein, are very useful tools to
evaluate µ(B).

Dynamics of waves will not be considered here and we
refer to [15] and [16] where the dynamics of sea wave
was statistically described, e.g. a probability distribution of
velocities of wave crests in W (x, y, t) were presented.

D. Counting waves at a sea surface

In this section will consider similar problems as in Sec-
tion II-B although this time a sea surface W (x, y) will be
considered instead of a record W (t) in time or along a line.
The height of local maximum will be denoted by M . First
formulas for the intensity of local maximums M higher than
h, i.e. µ(M > h), will be given. The problems were first
studied by Longuet-Higgins in [15].



For a local maximum located at p = (x, y) exceeding level
h if for the sea surface gradient

(Wx(p),Wy(p)) = (0, 0),

and the statement

B = “matrix Ẅ (p) is negative definite and W (p) > h”

is true. The intensity µ(M > h) can be evaluated using the
following version of Rice’s formula.

Multivalued Rice Formula: Consider a multivalued random
functions X(p) : Rn → Rn such that at the point p a statement
B about X, its derivatives or any other random process is true.
If zeros satisfying condition B are spread homogeneously in
space then, under some conditions see e.g. [13], [17], [14], the
following equation holds

µ(B) =

∫
P (B|Ẋ(0) = ẋ,X(0) = 0)

|det ẋ|fẊ(0),X(0)(ẋ,0) dẋ. (14)

In order to utilize (14) for derivation the intensity of waves
with crest above h, let us define X(p) = (Wx(p),Wy(p))
then

µ(M > h) =

∫
C

P (W (0) > h|Ẋ(0) = ẋ,X(0) = 0)

|det ẋ|fẊ(0),X(0)(ẋ,0)dẋ, (15)

where C = {ẋ : ẋ is negative definite matrix}. The so
expressed intensity µ(M > h) has to be computed numerically
and no explicit algebraic formula has been found yet. Even a
formula for intensity of local maximums in W (x, y), derived
first in [15], is expressed using the Legendre elliptic integrals
of the first and second kinds.

By (13) the probability that positive local maximum ob-
served at the sea exceeds h is given by

P (M > h) = µ(M > h)/µ(M > 0).

Differentiating (15) on h gives the pdf of M viz.

fM (h) = c

∫
C

|det ẋ|fẊ(0),X(0),W (0))(ẋ,0,h)dẋ, (16)

where C = {ẋ : ẋ is negative definite matrix} while c =
1/µ(M > 0) is the normalization constant. The integral in
(16) has to be computed numerically however for high values
of h, which is often of the main interest, asymptotic formulas
for fA(h) can be given, see [18], [14] and [19].

1) Joint distribution of crest height and length A,R.: In
this section we give formula for intensity of waves having
crest height exceeding h and crest half-length longer than r, i.e.
µ(A > h,R > r). Since for stationary sea surface W (x, y) =
W (p) waves having crest and length exceeding some fixed
thresholds are homogeneously spread in space formula one
can use (14) to evaluate µ(A > h,R > r), viz.

µ(A > h,R > r) =

∫
C

P (B|Ẋ(0) = ẋ,X(0) = 0)

|det ẋ|fẊ(0),X(0)(ẋ,0)dẋ,(17)

where C = {ẋ : ẋ is negative definite matrix} while

B = “W (0) > h and for all p ∈ Dr, W (0) ≥W (p) > 0”.

Here Dr is a disk centered at 0 having radius r. The integral in
(17) has to be computed numerically. This is not an easy task
since B is a function of infinitely many variables W (p), p ∈
Dr such that W (p) > 0, and thus it has to be approximated
by suitable discretization. For example, since a sea surface is
often observed on a grid pi, say, then in practice the following
is a natural approximation

B ≈ “W (0) > h, W (0) ≥W (pi) > 0 for all pi ∈ Dr”.

Using the approximative definition of B, the integral in (17)
becomes finite dimensional. Methods to evaluate numerically
(14) have been discussed in several papers, see e.g. [20], [21].
The program RIND in WAFO [2] can be used to evaluate
(15). Alternatively, one can use MC simulations (for example,
Fourier snapshots methods are presented in [4]) to approximate
the conditional probabilities P (B|·) and then numerically
integrate the integrals in (14).

Derivation of the formula for joint pdf of A,R is quite
complex. It involves generalizations of Rice’s formula for non-
homogeneously spread zeros of multivalued function X(p). In
fact, it helps to introduce an additional variable Θ and derive a
formula for the joint density of A,R,Θ, where Θ is a direction
from the crest to the nearest point on the zero level contour.
We will not give formulas here.

IV. WAVE SIZES DISTRIBUTIONS FOR A LONG-CRESTED
SPECTRUM

In this section we illustrate the proposed characteristics of
waves in space by presenting the probability density functions
(marginal and joint) for; crest height A, crest half-length R,
direction of wave front Θ and the wave size S, for waves
in a Gaussian sea having directional power spectrum shown in
Figure 3. The spectrum is defined by the following parameters;
significant wave height hs = 7 [m], average crest length in x
and y directions E[Lx], E[Ly], defined in (10), equal to 21π
[m] and 58π [m], respectively.

The presentation of the results is organized as follows. Iin
Section IV-A, the pdf of (R,Θ), defined according to Defini-
tion 2, is computed. Note that the point (R cos Θ, R sin Θ) is
the location of a crest front when the orign of the coordinate
system is placed at the location of a wave crest. In other words
R is the distance to the closest wave front from a wave crest.
Further in Section IV-A computation of the probability that
wave crest exceeds a fixed threshold is discussed. Then the
joint pdf of (A,R,Θ) is presented in Section IV-B. Finally in
Section IV-C we show the pdf of size S of a wave.

A. Joint probability density of R,Θ

The wave characteristics (R,Θ) have been called the half-
length of the crest and the direction of the wave front, respec-
tively. The probability distribution of (R,Θ) has the following
interpretation. Let place position of a randomly chosen wave
crest at origin (0, 0) and find the position q of the front of the
wave. Then q = R(cos Θ, sin Θ).

The joint pdf of R,Θ is presented in Figure 6 (Top) in
the polar coordinate system. The marginal pdfs of R, Θ are
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Fig. 6. Top: The joint pdf of R,Θ. Left-Bottom: the pdf of Θ. Right-Bottom:
the pdf of R. The marginal distribution are compared with the normalized
histogram obtained from simulations.

derived by means of numerical integration of the joint pdf and
presented in Figure 6 (Left-Bottom)– the azimuth Θ and in
(Right-Bottom) – the distance R. Both are compared for the
accuracy check with the normalized histograms of R and Θ,
respectively, found in simulated surfaces W (x, y). One can see
that histograms and pdfs fR(r), fΘ(θ) agree very well.

It agrees with intuition in particularly for nearly long-
crested seas.
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B. The joint pdf of A,R and Θ.

We turn now to the joint density of crest height A, the
distance to zero level contour R, and the angle Θ. We have
chosen the region of high waves such that the crest hight
A exceeds 0.5hs = 3.5 meter. The level 0.5hs is chosen
to be moderately high in order to allow comparisons with
values of A,R,Θ obtained from simulated records. One can
roughly estimate that P (A > 3.5) = 0.16/0.94, which means
that 17% of waves have crest exceeding 0.5hs = 3.5[m],
which is sufficiently high to be see frequently in the records.
Consequently, one concludes that in a long-crested sea, the
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Fig. 7. Conditional distributions given that crest is higher than 0.5hs (hs = 7
[m]). Top: The conditional joint pdf of the crest height A and the crest half-
length R. Bottom: The conditional pdf of R and Θ. In the left plot contour
lines contain 30%. 50%, 70% , 90%, 95%, 99%, 99.9% of the total probability
while the contour lines in the right plot have the corresponding percentage set
to 10%, 30%. 50%, 70% , 90%, 95%.

fraction of wave crests above the threshold 0.5hs is less than
13.5%.

In Figure 7, the marginal densities of R,A (left plot) and
Θ, R (right plot) given that A > 0.5hs, are presented. The
densities are integrals of the joint pdf of A,R,Θ normalized
by the probability P (A > 0.5hs). The levels of plotted contour
lines are relative so that regions enclosed by the contour lines
contain specified fractions of the total probability mass. Such a
choice of level lines helps in visual evaluations of the accuracy
of estimated joint pdf. More precisely, it enables comparisons
with observed values of A,R,Θ shown as dots in the plots,
since one can count fractions of dots included in the contours
and compare those with the contour level defining fractions.

In order to check the accuracy of the numerical integrations
involved in the computations of the densities shown in Fig-
ure 7, one thousand of waves were extracted (at random) from
simulated surfaces W (x, y). Since the probability that a crest
is higher than 0.5hs is 0.17 one expects to have 170 waves
satisfying the condition A > 0.5hs. Actually, there were 183
such waves with crest above the threshold. This exceeds the
expected value 170 by about one standard deviation thus the
difference is not significant.

For the extracted waves one has evaluated values of h,
r and θ. The pairs (r, θ) were plotted as dots in the left
plot and similarly pairs (θ, r) are shown as dots in the right
plot. The isolines of the conditional pdfs are selected so
that in the average there should be 180 · x% dots included
in the contour. Fractions x% are specified in the figure. It
is easier to count the point outside a contour line. This
yields 0.001 ·170 = 0.17, 1.7, 8.5, 17, 51, 85, . . . expected dots
outside the respective contour lines. In the left plot of Figure 7,
one finds 0, 1, 9, 21, 61, 91, . . . dots. Similarly in the right plot
one expects to have 1.7, 8.5, 17, . . . points outside the isolines
while in the right plot 4, 8, 22, . . . are counted. This confirms
that the accuracy of the estimated densities is quite good.

Finally, we note that as the height of crest A is getting
higher, the evaluation of the joint pdf of A,R and Θ by
means of generalized Rice’s formula is getting easier (and
faster) since for Gaussian fields the field around high local
maximum can be approximated by a function with some
random coefficients, see [17]. This is in contrast to using the
simulation approach to approximate the pdfs involving A by
counting frequencies – very high crests occur very seldom.
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C. Size of waves S

In Figure 6 (Bottom), the pdf of the crest half-length R is
shown. Variable R, defined in Definition 2, is the radius of
the disk centered at a wave crest and underneath of the sea
surface, see Figure 4. Thus, the distribution of the disk’s area
D could be used to describe the spatial size of waves. The
density of D = π R2 is given by

fD(s) =
1

2
√
π s

fR

(√
s/π
)
. (18)

For the considered symmetric directional spectrum, the pdf
of D (18) is shown in Figure 8 (Left). The pdf is compared
with the normalized histogram of D values extracted from
simulations of field W . The plot demonstrates again very good
accuracy of computed R-pdf.

It was mentioned in Section III-B that the area enclosed
by ellipse S, defined in (12), could be a more adequate proxy
describing waves geometry rather than the area of the disk D.
In order to find the distribution of S, one can first to evaluate
the pdf of crest lengths R̃ evaluated in the standardized sea
surface W̃ (x, y) defined in (11). The density of S can be then
computed by rescaling the disks by the mean half-wave lengths
in the directions of the x and y axes via

fS(s) =
1

2
√
πLxLy s

fR̃

(√
s/πLxLy

)
. (19)

The probability density of S is shown in Figure 8 (Right).
Comparison of the pdf with the normalized histogram of S
confirms good accuracy of evaluated pdf of R̃. From the plots
given in Figure 8 one can conclude that the areas for ellipse
S are statistically larger than the areas of disc D. Finally in
Figure 8 (Right) the dashed line is the conditional pdf of S
given that the crest height A exceeds 0.5hs. Not surprisingly
one can observe that high waves also have large sizes.

CONCLUSIONS

A new method to measure size of waves in spatial sea
surface records is presented. It is shown that the generalized
Rice’s formula can be used to evaluate the probability density
functions of wave sizes in a Gaussian sea including the joint
probability density of the crest height and the length of waves.
The pdfs are given by explicit formulas but involving multidi-
mensional Gaussian integrals. It is demonstrated that numerical
integrations, using the methods available in MATLAB toolbox
WAFO, give accurate approximations of the pdfs.

ACKNOWLEDGMENT

The first author was supported from Riksbankens Ju-
bileumsfond Grant Dnr: P13-1024 and Swedish Research
Council Grant Dnr: 2013-5180, while the second was partial
support by Swedish Research Council Grant 340-2012-6004
and by Knut and Alice Wallenberg stiftelse.

REFERENCES

[1] S. Gran, A Course in Ocean Engineering, ser. Developments in Marine
Technology. Amsterdam - London - New York - Tokyo: Elsevier
Science Publishers, 1992, vol. 8.

[2] P. Brodtkorb, P. Johannesson, G. Lindgren, I. Rychlik, J. Ryden, and
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